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1. INTRODUCTION

Mie theory provides a means of calculating the absorp-

tion and scattering of electromagnetic radiation by spheres

of any size compared with the wavelength. Although exact,

performing full Mie theory calculations is often cumbersome:

it requires an excessive amount of numerical storage space

and computer time, especially when the particles are large

compared with the wavelength. Under certain circumstances

however, it is possible to obtain a reasonable estimate of

the scattering and absorption properties of spheres without

resorting to detailed Mie theory calculations. These alter-

native approaches to exact Mie theory calculations are

useful provided the user realizes their limitations.

The regions of validity for Mie approximations are

usually characterized in terms of the size parameter,

X = 2rr/X, where r is the radius of the particle and X is

the wavelength of the impinging radiation. Unfortunately,

the use of an approximation over Mie theory is not a

clearcut decision; that is, the accuracy of most

approximations depend not only on X, but to some extent on

the complex index of refraction of the particle, m = n + ik.

Also the user must consider the degree of accuracy required

for his or her particular problem.

1.1 Organization of the Report

it is the aim of this report to explore some of the al-

ternatives to Mie theory and to access their ranges of

1



applicability. Chapter 2 discusses the use of ray optics to

obtain the phase matrix elements of a sphere that is large

compared with the wavelength. Chapter 3 discusses the use

of complex angular momentum theory to calculate the

efficiency factors for extinction, absorption and radiation

pressure. Chapter 4 compares various Mie approximations in

the scientific literature and assesses their regions of

validity. Chaptpv 5 summarizes the main results of this

report. For reference, Appendix A gives the equations for

the various Mie approximations investigated in this report.
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2. THE USE OF RAY OPTICS TO OBTAIN THE SCATTERING MATRIX
ELEMENTS FOR A SPHERE

2.1 Overview

The angular scattering properties of spheres can be

calculated using the scheme of ray optics (van de Hulst I and

Liou and Hansen 2 ) provided four conditions are satisfied:

1) the size parameter is much qreater than one

2) the real part of the index of refraction is greater
than one

3) the user is interested in the scattering pattern for
a small spread of particle sizes

4) the far field scattering pattern is desired.

In ray optics, incident radiation is treated as local-

ized rays whose encounters with the particle are governed by

the laws of reflection and refraction for geometrical op-

tics. The localized rays can be reflected externally or can

enter the particle where they are either absorbed or

internally reflected a number of times before exiting.

Also, light rays passing very close to the particle are

affected by Fraunhofer diffraction. Thus the total

intensity at a particular scattering angle is equal to the

contribution from Fraunhofer diffraction, plus that for rays

emerging from the particle after reflection and refraction.

1. van de Hulst, H. C. (1957) Light Scattering by Small
Particles, Wiley, Inc., New York, 470 pp.

2. Liou, K., and Hansen, J. E. (1971) Intensity and polar-
ization for single scattering by polydisperse spheres:
A comparison of ray optics and Mie theory, J. Atmos.
Sci. 28:995-1004.
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(Strictly speaking it is not correct to simply add the in-

tensities of the separate rays. For a single particle,

emergent rays interfere with each other because of phase

changes caused by external and internal reflection, and by

differing optical paths. These interference effects lead to

rapid oscillations in the scattered intensity as a function

of scattering angle which can only be predicted by Mie the-

ory. However if a small spread of particle sizes is consid-

ered, any phase effects are averaged out when integrating

over the spread of particle sizes.)

In ray optics, the gain, G, is used to describe the

relative scattered intensity as a function of scattering an-

gle. It represents the ratio of scattered intensity to that

which would exist if it were scattered isotropically and

conservatively 2 . Thus the gain is defined such that

w _ fG (Q) d Q 1
-d! - i(Q)dl (i

47r

where 12 is the solid angle and w,, the single scattering

albedo, is the ratio of the scattered energy to that scat-

tered and absorbed by the particles.

Below the equations governing ray optics are presented.

These equations are essentially the same as those found in

van de Hulst I and in Liou and Hansen 2 . Next, a Fortran sub-

routine called RAYOPT is described which determines the an-

gular dependent phase matrix elements il, i2' i3 and i4.

These matrix elements relate the polarization and the ampli-

tude of the incident field to that of the scattered field.

4



The results from RAYOPT are then verified against those from

Liou and Hansen, and from full Mie theory.

2.2 Fraunhofer Diffraction

Diffraction of the incident beam occurs because the

wavefront is partially obstructed as it passes very close to

the particle. For spheres, the gain as a function of scat-

tering angle resulting from diffraction is given by

G1F(0,X) = G2F(ox) = 2X 2  s 2(2)

X sin j

where the superscript F denotes the gain due to Fraunhofer

diffraction, J is the first order Bessel function and the

subscripts 1 and 2 refer to the gain components perpendicu-

lar and parallel, respectively, to a particular scattering

plane. The diffracted pattern is radially symmetric about

the forward direction and becomes more concentrated in the

forward direction as the size parameter increases. For the

case when 0 = 0, G F (OX) = G2F(0,X) = 0.5X2

2.3 Geometrical Optics

The geometry of the problem is given in Fiqure 1. The

angle between an incident ray and the tangent of the local

particle surface is denoted by T. For grazing incidence,

T eqjals 0 degrees; for central incidence, T equals 90 de-

grees. As an incident ray encounters the particle, some of

its energy is externally reflected while the rest enters the

particle. The ratio of externally reflected energy to the

5



Refraction With No " --. .. Refreotlon With Two
Inlernl Reflection p=l Intenl Reflection&

P=3

External
Reflection P = 0

Refraction With One
internal Reflection Ince t

Figure 1. Path of a Light Ray According to Geometrical
Optics, Where p Is the Order of the Ray (see Eq. 6)

incident energy is equal to the squares of the Fresnel re-

flection coefficients, rI and r2:

ir1 1
2 = sinT - m sinr 2 (3)

sinr + m sinT'

and

ir2 1
2  = m sinr - sin1 ' 2 (4)

m sinr + sinT'

where T' is the direction of the ray upon entering the par-

ticle. The angle r, is related to the incident angle, -,

through Snell's law

cosT' = COST/n (5)

Because energy is conserved, the energy entering the parti-

cle must either be absorbed or emerge after any number of

6



internal reflections. For a nonabsorbing particle, the

fraction of energy emerging after refraction with no inter-

nal reflection is equal to (1-jr 1 ,2 12)2; after one internal
2 22

reflection, it is rl1 21 (l-ir 1 ,2 1 ) , etc. Here it is con-

venient to define

,2 1, 12 2 for p = 0(l-lrl 21 2 )2 (rl, 2 j
2 )p -  for p > 1

where p 0 means external reflection and p ? 1 means re-

fraction plus p-l internal reflections (see Fig. 1). The

gain for geometrical optics, as given by Liou and Hansen
2,

is then

G(P)) =21 D7
1,2(&,X) = 2e 2 D exp(-4X k p sin T'),

where D is the divergence, defined as

sinrcosr

sin 0 dO J (8)

and

dO tanr
- = 2 - 2p (9)
dy tanT'

In Eq. 7, the exponential term accounts for absorption with-

in the particle. The total gain at a particular scattering

angle is then

N
G1 ,2 (,X) = GF1 ,2 + x: G (10)

p=0

7



where in practice, a value of 3 for N is sufficient to ac-

count for most of the energy scattered by geometrical op-

tics.

2.4 Relationship Between Gain And The Phase Matrix Elements

The angular dependent phase matrix elements relate the

polarization and amplitude of the scattered field to the in-

cident field. In the work of Blattner 3 , the incident and

scattered fields are described by the parameters Il, 12, U

and V which are similar to, but not the same as, the Stokes

parameters. For a spherical scatterer, the scattered field

(s subscript) is related to the incident field (o subscript)

through the amplitude scattering matrix

Isl iI  0 0 0 Iol

S22 0 i2 0 0 102

Us  
4 2R 2  0 0 i3  i4  U°

Vs  0 0 -i4  i3  V0

where R is the distance from the scatterer to the observer

and il, i2 , i3  and i4 are the angular dependent scattering

matrix elements defined as

iI  = CISI 2

2 = cIS 2
12  (12)

i 3 = c Re{Sls 2* }

14 = -c Im{SiS 2*

3. Blattner, W. (1972) Utilization instructions for opera-
tion of the Mie programs on the CDC-6600 computer at
AFCRL, F19628-70-C-0156, Research Note, RRA-N7240, Ra-
diation Research Associates, Inc., Fort Worth, Texas.

8



where S1  and S2 are the familar complex amplitude functions

and c is a normalization constant such that

1 = fi 1 (2) d S (13)

Coniparing Equationks 1 and 13 suggests that

G1  /4rw°

2 = G2 /47rw (14)

3 = (G1G2 )
1 /2/4rwo

4 = 0

2.5 Ray Optics Subroutine

A subroutine called RAYOPT has been developed to deter-

mine the phase matrix elements il, i2  ,3 and i4 at user

specified scattering angles. The inputs to the subroutine

are listed in Table 1. A flow diagram for RAYOPT is given

in Figure 2 and a brief description of the important vari-

ables and functions is given in Table 2.

For geometrical optics, RAYOPT determines the gains at

the user scattering angles in the following manner. With p

held fixed, the total deviation of a ray from its original

path, 0', is computed for incident angles, T, between 0 and

90 degrees in steps of 0.5 degrees where

- 2' (15)

Next, each user scattering angle is transformed so that it

also represents the total deviation of a ray from its origi-

nal path. This deviation is then compared with the devia-

9



Table 1. Input Parameters for RAYOPT

VARIABLE DESCRIPTION

NP Maximum Value for p When Performing the
Ray Tracing

NTHETA Number Of User Scattering Angles. The
Maximum is 150

PM Complex Index of Refraction of the Particle.
The Imaginary Part Is Positive

THET(150) Array Containing the User Scattering Angles

WO Single Scattering Albedo of the Particle

X Size Parameter

tions for known incident angles to determine what incident

angles yield emergent rays at a user scattering angle. When

a user scattering angle falls between two values of 0', the

incident angle is obtained by means of a linear interpola-

tion. With the incident angle now known, the gain at the

user scattering angle is calculated using Eqs. 3 - 9.

Before computing the gain, RAYOPT checks to make sure

the incident angle does not lead to either a rainbow, i.e.

dO/dT-'0, or a glory, i.e. 0= 180 and sin 0= 0. (The scheme

of ray optics predicts infinite intensities at these angles,

see Eq. 8.) If a rainbow or glory angle is found, the gain

calculation is performed for an incident angle given

by T= T- 2 degrees. The resulting gain is then used unless

it is still excessively large (>100); in that case, the gain

10



Compute the Gain
at the User Scattering Angles

Due to Diffraction

I
Calculate the Gain

at the User Scattering Angles

Due to External Reflection (P - 0)

Determine the Gain
at the User Scattering Angles
for All P That Do Not Have

a Rainbow or Glory (Criterion: P ')

I
Compute the Gain

at the User Scattering Angles
for All Remaining P Upto NP

I
Convert the Gains to Matrix Elements

I
Return

Figure 2. Flow Diagram of the Subroutine RAYOPT



Table 2. Important Variables and Functions in RAYOPT

PARAMETER DESCRIPTION

GAINP Function That Returns the Gain for a
Given Incident Angle and p

GAIN1(150), Keeps a Running Total of the Gains
GAIN2(150) at the User Scattering Angles

GDIFF(150) Gains at the User Scattering Angles
Due To Fraunhofer Diffraction

Ji Function That Returns The Bessel
Function Of The First Kind

PNAUT Maximum Value of p that Does Not Have
a Rainbow or Glory

RENTI(150), Angular Dependent Matrix Elements il,
RENT2(150) i2 , i3 and i4 Respectively
ENT3(150),
ENT4(150)

TAU Angle of An Incident Ray With Respect
To The Particle Surface

THETPR(181) Array Containing the Total Deviation
of Emergent Rays for Incident Rays
between 0 and 90 degrees in Steps of
0.5 degrees

12



is set equal to 100. The gain calculations are simplified

for p < n because they do not contain rainbows or glorys.

These values of p are done first in RAYOPT where the amount

of computer time is reduced significantly. Finally for cen-

tral incidence, where T is 90 degrees and 0 is 0 degrees,

gain equals GP1,2 0.5(e 1 ,2 2/(l-p/n) 2)exp(-4X k p).

2.6 Sample Calculations Using RAYOPT

To ensure that RAYOPT is working properly, a series of

calculations have been performed and compared with those

from other researchers. Figures 3 and 4 duplicate Figures 1

106 I I I I I I

Geometrical Optics1o5 k =0_

10'

0

c102

1100

10-

l I I I I I I I

0 30 60 90 120150 0 30 60 90 120150180

Scattering Angle (8) Scattering Angle (8)

Figure 3. Recalculation of Figure 1 of Liou and Hansen 2

Angular Gain for Geometrical Optics using RAYOPT. The Ver-
tical Scale Applies to the Lowermost Curves (n = 1.45 and
2.00) whil5 the Other Curves Are Displaced Upwards by Fac-
tors of 10
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2 .6 1 I I I I 1 1

2.4 - Geometrical Optics
k = 0

2.2 _

2

C 1.8 _
1.011 1.54' 1 .6 - .1 . .. . . . . . . . . . . . .. ...... ................ .

0
N 1.4 _

o 1.2 _
01 33 1 .7

0.870 o 8 -1.3 ........................ ....... .i i
0.6
0.4 .

0.2 -2.00

0 1.45......................... .............................. ...

-0.2 _

- 0 .4 - -T -_ _ _ _ _ _ _ _ _ _ ,

0 30 60 90 120 150 0 30 60 90 120150180

Scattering Angle (8) Scattering Angle (a)

Figure 4. Recalculation of Figure 2 of Liou and Hansen 2,

Degree of Polarization for Geometrical Optics using RAYOPT.
The Vertical Scale Applies to the Lowermost Curves (n = 1.45
and 2.00) while the Other Curves Are Displaced Upwards by
0.8
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and 2 of Liou and Hansen 2 . There is complete agreement ex-

cept in some instances at the rainbow and glory angles: Liou

and Hansen did not say how they dealt with these angles.

Figures 5 and 6 give comparisons between ray optics and

Mie theory for the matrix elements iI , i2 and i3. Figure 5

represents the scattering by a particle with an index of re-

fraction of 1.33 + 0.Oi while in Figure 6, an index of re-

fraction of i. . + 0.Oli has been used. In both figures,

the matrix elements for ray optics represent a size parame-

ter of 400. When performing the Mie calculations, it was

necessary to use a particle number density distribution,

N(r), described by a log-normal distribution because inter-

ference effects lead to rapid oscillations in the angular

scattering pattern of a single sphere. This analytical for-

mulation is given by

dN(r) N log(r/r Ne)2

dlog(r) (27)1/2 og exp log16)

where ro, q and N are the geometric mean radius, geometric

standard deviation and total number of particles respec-

tively. In Figures 5 and 6, an r0  of 63.66 micro-

meters, a of 0.1, and N of 1 particle cm-1 have been used.

The value for r0 was chosen because it converts to a size

parameter of 400 for 1 micrometer radiation. The range of

the Mie calculations was from 50 to 100 micrometers.

Figure 5(a) shows good agreement between the values of

i for ray optics and Mie theory except for the rainbow re-

gion from 130 to 140 degrees and at 180 degrees. The peak

15



10' =_.II I I

m = 1.33 4- 0. Ray Optics
1 400 Mie Theory

102 - - Ratio10,

101_

E

q100 
-

LLI
10

10-3
10O- 4 ..

(a) 0 30 60 90 120 150 180
Scattering Angle (8)

10

m 1.33 + 0.Oi Roy Optics

iO x= 400 ....... Mie Theory
- - - - Ratio

.. 102

C

10

X 10'

, 2 10°

10-

10 - 1

(b) 0 30 60 90 120 150 180

Scattering Angle (8)

Figure 5. Values of (a) i 1  (b) i for Ray optics

and Mie Theory Where There-I No A sorption Within

the Particle
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104 - I I I

m = 1.33 + 0.0i Roy Optics
10 = 400 ....... Mie Theory

Rotio
.- T 102

C 1 G

-I 100 - .
LJ
x Io-,-

0

10-3.

i0
- 4 .

(c) 0 30 60 90 120 150 180

Scattering Angle (8)

Figure 5. (continued) Values of (c) i for Ray
Optics and Mie Theory Where There Is NA Absorption
Within the 2article. In (c) the Values Beyond
About 80 Degrees Are Not Plotted Because i3 for
Mie Theory Is Negative
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10'

m = .- 001;Roy Optics
400 ... Mie Theory

Ratio

C 101

E

4.-3

10 -

(a) 0 30 60 90 120 150 180

Scattering Angle (a)

m =1.54 0.01CL' Roy Optics
10 400Mie Theory
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a) 0
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x

(b) 0 30 60 90 120 150 180

Scattering Angle (8)

Figure 6. Values of (a) i. , (b) i for Ray Optics
and Mie Theory Where Thefe Is Agsorption Within
the Particle
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10'
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= 400 ....... Mie Theory
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Scattering Angle (8)

Figure 6. (continued) Values of (c) i for Ray
Optics and Mie Theory Where There Is Agsorption
Within the Particle. In (c) the Values Beyond
About 70 Degrees Are Not Plotted Because i3 for
Mie Theory Is Negative
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at 180 degrees for Mie theory is related to the familiar

glory phenomenon. Ray optics does not predict the glory and

here lies one of its major weaknesses. Figure 5(b) suggests

only fair agreement between the values of i2 for ray optics

and Mie theory. In Figure 5(c), the values of i3 for ray

optics are close to those for Mie theory provided the scat-

tering angle is less than 80 degrees. Beyond this angle

however, ray optics cannot be used in place of Mie theory

because i3  for Mie theory is negative. This limitation of

ray optics is not as severe as it may appear since li3 l is

small beyond 80 degrees.

Figures 6(a) and 6(b) show better general agreement be-

tween Mie theory and ray optics except near the diffraction

peak. The improved accuracy of ray optics can be attributed

to the absorption within the particle which eliminates the

less accurate contributions from p > 1. However discrepan-

cies still exist in the values of i2 for scattering angles

between 60 and 80 degrees. Here, ray optics predicts values

for i2 that are 10 to 100 times greater than Mie theory. In

Figure 6(c), the values of i3 for ray optics are close to

those for Mie theory provided the scattering angle is less

than 60 degrees. Beyond 60 degrees, Mie theory predicts

negative values for i3.
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3. CALCULATING MIE EFFICIENCY FACTORS WITH COMPLEX ANGULAR
MOMENTUM THEORY

3.1 Overview

Three parameters often obtained from Mie theory calcu-

lations are the efficiency factors for extinction, absorp-

tion and radiation pressure which are refered to as Qext'

Qabs and Qpr respectively. Qext and Qabs are related to the

extinction and absorption cross sections, Cext and Cabs, by

Qext - (17)

A

and

Qabs C abs (18)

A

where A is the cross-sectional area of the sphere and the

scattering efficiency follows as Qsct = Qext - Qabs" The

radiation pressure efficiency, which measures the total rate

of momentum transfer to the particle, can be converted to

the asymmetry parameter, g, by

g = (Qext - Qpr)/Qsct * (19)

Complex angular momentum theory can be used to deter-

mine the Mie efficiency factors of a sphere that is large

compared with the wavelength. The governing equations have

been developed by Nussenzveig and Wiscombe4 . (These equa-

tions have been replicated in Appendix A due to their ex-

4. Nussenzveig, H. M., and Wiscombe, W. J. (1980) Efficiency
factors in Mie scattering, Phys. Rev. Letters, 45:
1490-1494.
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treme length.) Nussenzveig and Wiscombe have shown that

when compared with exact Mie values, complex angular momen-

tum theory gives relative errors of -(1-10)% for X = 10 and

-(0.01-0.001)% for X = 1000. The theory does not predict

the rapid changes in the values of Q ext and Qabs as a func-

tion of size parameter, but this high-frequency "ripple

structure" can be ignored in many applications.

3.2 Software

Source code has been obtained from Warren Wiscombe5

which calculates Qext, Qabs and Qpr using complex angular

momentum theory. The code was written in standard For-

tran 77 and therefore, required very few modifications to

operate on the AFGL CYBER system. Specifically, to avoid

underflow errors, checks have been inserted before calls to

the Fortran CEXP function. In addition the ACCUR parameter

in the code, which establishes a convergence criterion for

numerical integrations, has been changed from 10-6 to 10-3 .

This change was recommended by Warren Wiscombe and acts to

speed up the program without a significant loss of accuracy.

3.3 Timing Comparisons with Mie Theory

It is well known that the computation time for Mie cal-

culations is directly proportional to the size parameter.

Figure 7 illustrates this clearly where the contours repre-

sent CPU times for various size parameters and imaginary in-

dices of refraction. The CPU times were determined using

5. Wiscombe, W. J., private communication.
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the Fortran SECOND function, available on the AFGL Cyper

computer.

For complex angular momentum theory, the expression for

Qext is a "one line" expression that requires very little

computer time. On the otherhand, the expressions for Qabs

and Qpr involve numerical integrations that require more CPU

time. Therefore, a series of timing runs have been per-

formed for a wide range of size parameters and indices of

refraction to determine where complex angular momentum the-

ory is faster than Mie theory. In the comparisons, the CPU

time for complex angular momentum theory represents the to-

tal time required to compute Qext' Qabs and Qpr- (Qext'

Qabs and Qpr are computed simultaneously during a single Mie

run.)

Figure 8 gives CPU times for complex ahgular momentum

theory as a function of size parameter and imaginary index

of refraction. The figure suggests that there is broad min-

ima in the CPU time for imaginary indices of -(0.01-1).

Other timing runs indicated that the CPU times were not in-

fluenced by the real index of refraction.

Figure 9 compares the CPU times for complex angular mo-

mentum theory against those for Mie theory where the compar-

ison is expressed as

TA
log (20)TMIE

In Figure 9, it can be seen that complex angular momentum

theory is faster than Mie theory for size parameters greater
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than 200 to 500, depending on the imaginary index of refrac-

tion. Furthermore, percent errors are generally less than

1% for size parameters greater than 500 so Mie theory can be

replaced by complex angular momentum theory without sacri-

ficing accuracy.

3.4 A Singularity in the Expression for Qext

In the course of testing the source code provided by

Warren Wiscombe, it was discovered that a singularity exists

for Qext whenever the imaginary index was less than about

10- 3 and the real index equals 3, 5, 7... Specifically,

this ill-behavior arises from a division by zero in the sum-

mation term of Eq. 1 of Nussenzveig and Wiscombe4 . The ex-

tent of the ill-behavior can be seen in Figures 10(a) and

10(b) where percent errors, when compared with Mie theory

values, are given for real parts of 2.5 and 3.0. Subsequent

testing showed that the expression for Qext can be used con-

fidently provided

In- n* I > 0.05 (21)

where n = 3, 5, 7...
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4. OTHER APPROXIMATIONS FOR Qext AND Qabs

This chapter examines various approximations for Qext

and Qabs that are available in the scientific literature.

Specifically, regions of validity are established for each

approximation by comparing exact Mie value against the cor-

responding approximate value. A wide range of size parame-

ters and indices of refraction were considered in the analy-

sis. In addition, the regions of validity are represented

in a way that that permits the various approximations to be

intercompared. The purpose of this latter test is to see

where better approximations are needed.

4.1 Approximations That Were Investigated

Five approximations for Qext have been investigated in

this report: two for small particles6 '7 and three for large

particles4 '8 '9. For Qabs' a total of seven approximations

were looked at: those given by 4,6-9, plus two other approx-

imations for large particles I0 'I1 . A brief description of

6. Rayleigh, Lord (1871) On the light from the sky, its po-
larization and colour, Philos. Mag., 41:107-120, 274-
279 (reprinted in Scientific Papers by Lord Rayleigh,
Vol. 1:1869-1881, No. 8, Dover, New York, 1964).

7. Wiscombe, W. (1980) Improved Mie scattering algorithms,
Appl. Opt., 9:1505-1509.

8. Deirmendjian, D. (1969) Electromagnetic Scattering on
Spherical Polydispersions, Elsevier, New York.

9. Ackerman, S. A. and Stephens, G. L. (1987) The absorption
of solar radiation by cloud droplets: an application
of anomalous diffraction theory, J. Atmos. Sci.,
44:1574-1588.

10. Bohren, C. F. and Nevitt, T. (1983) Absorption by a
sphere: A simple approximation, Appl.Opt., 22:774-775.
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how each approximation works is given in Table 3. For ref-

erence, the equations governing the various approximations

have been reproduced in Appendix A of this report.

4.2 Comparison Scheme

4.2.1 Realm of Comparison

Table 4 summarizes the size parameters and complex in-

dices of refraction that are investigated in the current

analysis. These values encompass the realm of particles

normally encountered in atmospheric aerosol modeling. For

each approximation, n is held fixed and the exact Mie and

approximate values are calculated at incremental steps of

the size parameter, X, and the imaginary index of refrac-

tion, k. The steps are equally spaced in the logarithms of

X and k where the spacing consists of fifty steps per de-

cade of X and twenty five steps per decade of k. Similar

sets of data are also computed for other fixed values of n.

4.2.2 Smoothing Function

Before constructing error plots, data for Mie theory

and the approximations have been convolved with an eleven

point smoothing function, S. Specifically, the smoothing

function is passed over the data for X > 1 while k is held

11. Levine, P. H. (1978) Absorption efficiency for large
spherical particles: A new approximation, AppI. Opt.,
17:3861-3862.
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Table 4. Particle Characteristics That Were
Investigated

PARAMETER RANGE

Real Part of the 1.1 - 3.0
Index of Refraction, n

Imaginary Part of the 106 -la

Index of Refraction, k

Size Parameter, X 10- 2 -0 3

fixed so that

10

F Xi SLFX (22)
L=i+L-5

where FXi represents the Mie or approximate value at conse-

cutive steps of the size parameter, X . The weighting fac-

tors for the smoothing function are given by

) L 0, 1,..., 10 (23)1024

where (10) is the binomial coefficient,

( 10 10!((L!(l0-)!)(214)

The smoothing function acts to eliminate the high-fre-

quency ripple structure that occurs in the exact Mie values
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for the efficiency factors as a function of X for fixed k.

For reference, the ripple structure in Qsct is illustrated

in Figure 11 for fixed values of k. The reason for elimi-

nating the ripple structure is twofold:

1) it allows for a fairer assessment of the various ap-
proximations because the ripple structure can only
be calculated with Mie theory

2) since many aerosol modeling applications involve a
polydispersion of particles, the effects of the rip-
ples are "washed out" when integrating over particle
size.

The width of the smoothing function has been chosen to pre-

serve the large scale oscillations, known as interference

structure.

4.2.3 Percent Error Contour Plots

For each approximation, two-dimensional percent error

diagrams have been developed for fixed values of n. The

percent errors are computed by

EX = 100(Ax k -MX k )/Mx k (25)

where A and M are the (smoothed) approximate and Mie values,

respectively, evaluated at size parameter Xi and imaginary

index of refraction kj. Contour lines have been drawn for

percent errors of 8, 20 and 50%.

4.3 Results

4.3.1 Regions of Validity for the Extinction Approximations

Figures 12(a) - 12(e) give representative percent error

diagrams for each of the extinction approximations. Each

plot is for n 1.54, and the regions where percent errors
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are less than 8% have been shaded. For brevity, plots for

other values of n have not been included here.

Figures 12(a) - 12(e), and similar plots for other n,

have been used to determine the regions of validity of the

various approximations for Qext* These results are given in

Figure 13. The dashed line for the Nussenzveig and Wiscombe

approximation indicates the useful range if the singularity

that arises for odd integer values of n is avoided (see Sec-

tion 3.4).

In general, existing approximations for Qext do reason-

ably well for both large and small size parameters. Of the

large particle approximations, the Ackerman and Stephens ap-

proximation extends to the lowest size parameter. If higher

accuracies are needed (i.e. 0.1 to 1% or better), the

Nussenzveig and Wiscombe approximation has a wider useful

range than the other large particle approximations because

it reproduces the higher-order ripple structure better.

Most approximations however, have trouble predicting the

magnitude and location of the first interference peak which

occurs between size parameters of 1 and 10 (see Figure 11).

On the other hand, percent errors within this narrow band

are generally less than 20% for many of the approximations.

4.3.2 Regions of Validity for the Absorption Approximations

Figures 14(a) - 14(g) give representative percent error

diagrams for each of the absorption approximations. Each

plot is for n = 1.54, and the regions where percent errors
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are less than 20% have been shaded. For brevity, plots for

other n have not been included here.

Figures 14(a) - 14(g), and similar plots for other n,

have been used to determine the regions of validity of the

various approximations for Qabs" These results are given in

Figure 15. The region of validity of the Nussenzveig and

Wiscombe approximation is drawn with a dashed line because

it is only computionally efficient for size parameters

greater than about 200, relative to exact Mie theory (see

Section 3.3), where it is accurate to about 0.1%. Also, to

avoid clutter, the region of validity of the Ackerman and

Stephens approximation has not been shown; however, its

omission does not alter the shape of the shaded region in

Figure 15 because the Ackerman and Stephens approximation

for Qabs is similar to the Bohren and Nevitt approximation.

Figure 15 suggests that existing approximations for

Qabs are less accurate than those for Qext* For example,

the tolerable error has been relaxed to 20% because signifi-

cant errors extend to rather large size parameters. Of the

large particle approximations, the Bohren and Nevitt approx-

imation appears to have the largest region of applicability.

In contrast to Figure 13, the percent errors within the

shaded region of Figure 15 often exceed 50%.
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5. SUMMARY AND CONCLUSIONS

This report has explored alternative algorithms to Mie

theory. Specifically, Chapter 2 discussed the use of ray

optics to calculate the phase matrix elements of polydis-

perse spheres in geometrical optics limit. Generally speak-

ing, ray optics should be used for size parameters greater

than 400, and becomes more accurate for particles containing

significant absorption. Chapter 3 explored the use of com-

plex angular momentum theory to determine Qext' Qabs and Qpr

(or g). It was shown that although accurate for size param-

eters greater than 20, this technique is only computation-

ally efficient for size parameters greater than 500. In

Chapter 4, approximations for Qext and Qabs in the scien-

tific literature were investigated and their regions of va-

lidity were established. It was shown that existing approx-

imations can give reasonable estimates of Q ext for most size

parameters and complex indices of refraction. On the other

hand, the approximations for Qabs are much less accurate.
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Appendix A

Equations for the Various Mie Approximations
Investigated in this Report

This appendix gives the equations used to calculate the

extinction efficiency, Qext' and the absorption efficiency,

Qabs' for the Mie approximations discussed in this report.

For some of the approximations, the scattering efficiency,

Qsca' is calculated in place of either Qext or Qabs where

the three terms are then related by Qext = Qsca + Qabs* The

list of equations serves only as an overview and the reader

should consult the original references for more detailed

information. Also, some of notation from the original ref-

erences has been changed such that it is consistent with the

terminology used in this report. In the equations below, X

represents the particle size parameter and m = n + ik repre-

sents the complex index of refraction of the particle.

Equations for the Rayleigh Approximation
6

The Rayleigh approximation for Qabs is computed as

Qabs U 4m (A-i)

and Q sca is given by

228xnM2 -_ I (A-2)

where Qext Qsca + Qabs"

A-I



Equations for the Wiscombe Approximation
7

The Wiscombe approximation for Qext is computed as

Oext = 6X Re(a a2) (A-3)

and Qsca is given by

4
Qsca = 6X T (A-4)

where Q abs = Qext - Qsca and

1 2 4m2+5 4
A M 2_1 -fOX + 714 00 X

a =2i- (A-5)

+ 2m 2 5 2

b = 2 1 70 (A-6)
45 2m 2 -_ 5 2

1 3 X

2 m- 1 1 - 14
a 2  iX 1 5  2m-72 (A-7)

2m 2 +3 2m-73
14

D = m2 +2+ (1- m2)nX2_ 8m 4 -385m2+350 4
10 1400 X

mn2 - 1 X3 12\
+2i M_1X 3 1--X 2 (A-8)3 10O

and

^ 2IA2~ 2

a = 1 AI1 + 5 IA12 (A-9)
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Equations for the Deirmendlian Approximation
8

The Deirmendjian approximation for Qext is computed as

Q ext = Q VHext ( 1 + D) (A-10)

and Qabs is given by

Qabs = VHabs (1 +D) (A-i)

where QVHext is the extinction efficiency from van de

Hulst ,

4 cos
QVHext = 2- p exp(- p tan 0) sin(p -3)

2

+4(O I[cos20-exp(-p tan0)cos(p -2)] (A-12)

and QVHabs is the absorption efficiency from van de Hulst ,1

exp(- 2p tan P) exp(- 2p tan 0) - 1QVHabs =1+ pa + 2(ta 2 (A-13)V a ,sp t a n 0 2 (p t a n

where

=tan- 1( n kl (A-14)

and

p = 2X(n - i) (A-15)

A-3



In Eqs. A-10 and A-11, the correction term, D, is given by

(n-i )2 fP 0.2p -n +1 for p 55(n- 1)

n-1 ilp fr.(-)55 4.08
T6n [ f( +1] o (-) 1+ 3tan~

D= (A-16)

(n-l) [f(P) +lI fo 4.08 <P5 4.08

2n(l + 3tan P) fo 1+3tan -P1 +tan~

2. 04(n -1) [ fU3)+ 1] or 4.08
nf(P)p orPl+tanp3

where

f(J3) = 1 + 4 tan + +3 tan 2p(-7

A-4



Equations for the Ackerman and Stephens Approximation
9

The Ackerman and Stephens approximation for Qext is computed

as

4m 2  P on COS2 cos(@_ _2P + O
Q ext =2- -p-e-  Po sinp -2) +)

M21

4 -p [ tank- -  I 2 cO

=2

x sin(pv'7 7_- )+ CO O~V 2) (A-18)

and Q abs is given by

abs e2Xk

m -4Xkj/

2 Xke v( _ 4X) (A-19

where

=tan- 1(- k (A-20)

and

p = 2X(n - I) (A-21)

A-5



Equations for the Nussenzveig and Wiscombe 
Approximation

4

The Nussenzveig and Wiscombe approximation for Qext is

computed as

2 { --

Q 2 =2+ 1.9923861X +8Im _L(I +1) (2_1)

ext

- 2(m + 1)- (M2  -- i+ i m 1 m X-

m -i 2jexp[2i(m - l)XI- -(m -1) 1 j (m 5 ]km-Ii

x exp[2i (m- 1 + 2jm)X] -0. 7153537X

1-9 - --

- 0.3320643 Ir [eI(m2- 2 (M2 + 1) (2m 4 - 6M 2 +3 X

+ O(X - 2) + ripple (A-22)

Qabs is given by

Q =b Q (Q a) + (Q ab) b,(A-23)

where

2 X

(Qabs) "- 01 0
2 (rj) s in 0 cOs0 dO (A-24)

F X=

1- 2 2 x

(Qabs) e =2- 3 X- 2- 2 (r+)dx (A-25)

and

2 x

(o b.) .=2-xT Y Jo b (A-26)

A-6



In Eqs. A-24 through A-26,

e-)( ~) re b) (A-27)

where

rj=R~,j,l.=1,2, Rj)=(-i)(z J- ue,.(z+Ue0  (A-28)

z=cosO, u=mcose, sinO=msin6, (A-29)

m- 2{ ' Zz for Eq. A-24 ( -0

2, e = in 2, z z 2  for Eqs. A-25 and A-26

and finally,

b = 4X Im(m cos 0'+ O'sin 0) (A-31)

Equations for the Bohren and Nevitt Approximation
1 0

The Bohren and Nevitt approximation for Qabs is computed as

4n' (1
2 2 in 2 --)(n+) -(n-i) exp(-) n ex

(+ (n 1, n

where

T= 4kX (A-33)
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Equations for the Levine Approximation

The Levine approximation for Qabs is computed as

Q,I =2(b 1 -A) lH(4kX)+ H(B)- H(4kX+ B) (A-34)

where the function H(u) is given by

1, (u e - I+ e)= + e 2 1 (A-35)

and

2n 1 + ( 2  2)
B - (+ . (A-36)

I-A

The value for A in Eqs. A-34 and A-36 is determined using an

iterative scheme given by

A = R + (A- i) exp -211+A (A-37)

where the iteration is begun with A - R and

R = [(n- 1)2 + k2(-8r2 21S(ni) +k (A-38)
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